Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Am Vet Med Assoc ; 261(7): 1045-1053, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2270116

ABSTRACT

OBJECTIVE: To provide epidemiological information on the occurrence of animal and human rabies in the US during 2021 and summaries of 2021 rabies surveillance for Canada and Mexico. PROCEDURES: State and territorial public health departments and USDA Wildlife Services provided data on animals submitted for rabies testing in 2021. Data were analyzed temporally and geographically to assess trends in domestic animal and wildlife rabies cases. RESULTS: During 2021, 54 US jurisdictions reported 3,663 rabid animals, representing an 18.2% decrease from the 4,479 cases reported in 2020. Texas (n = 456 [12.4%]), Virginia (297 [8.1%]), Pennsylvania (287 [7.8%]), North Carolina (248 [6.8%]), New York (237 [6.5%]), California (220 [6.0%]), and New Jersey (201 [5.5%]) together accounted for > 50% of all animal rabies cases reported in 2021. Of the total reported rabid animals, 3,352 (91.5%) involved wildlife, with bats (n = 1,241 [33.9%]), raccoons (1,030 [28.1%]), skunks (691 [18.9%]), and foxes (314 [8.6%]) representing the primary hosts confirmed with rabies. Rabid cats (216 [5.9%]), cattle (40 [1.1%]), and dogs (36 [1.0%]) accounted for 94% of rabies cases involving domestic animals in 2021. Five human rabies deaths were reported in 2021. CLINICAL RELEVANCE: The number of animal rabies cases reported in the US decreased significantly during 2021; this is thought to be due to factors related to the COVID-19 pandemic.


Subject(s)
COVID-19 , Cat Diseases , Cattle Diseases , Chiroptera , Dog Diseases , Rabies , Animals , Cats , Cattle , Dogs , Humans , Animals, Domestic , Animals, Wild , Cat Diseases/epidemiology , Cattle Diseases/epidemiology , COVID-19/epidemiology , COVID-19/veterinary , Dog Diseases/epidemiology , Foxes , Mephitidae , New York , Pandemics , Population Surveillance , Rabies/epidemiology , Rabies/veterinary , Raccoons , United States/epidemiology
2.
Neurol Clin Pract ; 12(4): e66-e74, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2089290

ABSTRACT

Background and Objectives: There have been numerous reports of neurologic manifestations identified in hospitalized patients infected with SARS-CoV-2, the virus that causes COVID-19. Here, we identify the spectrum of associated neurologic symptoms and diagnoses, define the time course of their development, and examine readmission rates and mortality risk posthospitalization in a multiethnic urban cohort. Methods: We identify the occurrence of new neurologic diagnoses among patients with laboratory-confirmed SARS-CoV-2 infection in New York City. A retrospective cohort study was performed on 532 cases (hospitalized patients with new neurologic diagnoses within 6 weeks of positive SARS-CoV-2 laboratory results between March 1, 2020, and August 31, 2020). We compare demographic and clinical features of the 532 cases with 532 controls (hospitalized COVID-19 patients without neurologic diagnoses) in a case-control study with one-to-one matching and examine hospital-related data and outcomes of death and readmission up to 6 months after acute hospitalization in a secondary case-only analysis. Results: Among the 532 cases, the most common new neurologic diagnoses included encephalopathy (478, 89.8%), stroke (66, 12.4%), and seizures (38, 7.1%). In the case-control study, cases were more likely than controls to be male (58.6% vs 52.8%, p = 0.05), had baseline neurologic comorbidities (36.3% vs 13.0%, p < 0.0001), and were to be treated in an intensive care unit (62.0% vs 9.6%, p < 0.0001). Of the 394 (74.1%) cases who survived acute hospitalization, more than half (220 of 394, 55.8%) were readmitted within 6 months, with a mortality rate of 23.2% during readmission. Discussion: Hospitalized patients with SARS-CoV-2 and new neurologic diagnoses have significant morbidity and mortality postdischarge. Further research is needed to define the effect of neurologic diagnoses during acute hospitalization on longitudinal post-COVID-19-related symptoms including neurocognitive impairment.

3.
Clin Infect Dis ; 75(1): e741-e748, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2017777

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in adults (MIS-A) was reported in association with the coronavirus disease 2019 (COVID-19) pandemic. MIS-A was included in the list of adverse events to be monitored as part of the emergency use authorizations issued for COVID-19 vaccines. METHODS: Reports of MIS-A patients received by the Centers for Disease Control and Prevention (CDC) after COVID-19 vaccines became available were assessed. Data collected on the patients included clinical and demographic characteristics and their vaccine status. The Vaccine Adverse Events Reporting System (VAERS) was also reviewed for possible cases of MIS-A. RESULTS: From 14 December 2020 to 30 April 2021, 20 patients who met the case definition for MIS-A were reported to CDC. Their median age was 35 years (range, 21-66 years), and 13 (65%) were male. Overall, 16 (80%) patients had a preceding COVID-19-like illness a median of 26 days (range 11-78 days) before MIS-A onset. All 20 patients had laboratory evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Seven MIS-A patients (35%) received COVID-19 vaccine a median of 10 days (range, 6-45 days) before MIS-A onset; 3 patients received a second dose of COVID-19 vaccine 4, 17, and 22 days before MIS-A onset. Patients with MIS-A predominantly had gastrointestinal and cardiac manifestations and hypotension or shock. CONCLUSIONS: Although 7 patients were reported to have received COVID-19 vaccine, all had evidence of prior SARS-CoV-2 infection. Given the widespread use of COVID-19 vaccines, the lack of reporting of MIS-A associated with vaccination alone, without evidence of underlying SARS-CoV-2 infection, is reassuring.


Subject(s)
COVID-19 Vaccines , COVID-19 , Connective Tissue Diseases , Adult , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Female , Humans , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/etiology , Vaccination/adverse effects
4.
J Am Vet Med Assoc ; 260(10): 1157-1165, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1834225

ABSTRACT

OBJECTIVE: To provide epidemiological information on animal and human cases of rabies in the US during 2020 and summaries of 2020 rabies surveillance for Canada and Mexico. ANIMALS: All animals submitted for laboratory diagnosis of rabies in the US during 2020. PROCEDURES: State and territorial public health departments and USDA Wildlife Services provided 2020 rabies surveillance data. Data were analyzed temporally and geographically to assess trends in domestic and wildlife rabies cases. RESULTS: During 2020, 54 jurisdictions submitted 87,895 animal samples for rabies testing, of which 85,483 (97.3%) had a conclusive (positive or negative) test result. Of these, 4,479 (5.2%) tested positive for rabies, representing a 4.5% decrease from the 4,690 cases reported in 2019. Texas (n = 580 [12.9%]), Pennsylvania (371 [8.3%]), Virginia (351 [7.8%]), New York (346 [7.7%]), North Carolina (301 [6.7%]), New Jersey (257 [5.7%]), Maryland (256 [5.7%]), and California (248 [5.5%]) together accounted for > 60% of all animal rabies cases reported in 2020. Of the total reported rabid animals, 4,090 (91.3%) involved wildlife, with raccoons (n = 1,403 [31.3%]), bats (1,400 [31.3%]), skunks (846 [18.9%]), and foxes (338 [7.5%]) representing the primary hosts confirmed with rabies. Rabid cats (288 [6.4%]), cattle (43 [1.0%]), and dogs (37 [0.8%]) accounted for 95% of rabies cases involving domestic animals in 2020. No human rabies cases were reported in 2020. CONCLUSIONS AND CLINICAL RELEVANCE: For the first time since 2006, the number of samples submitted for rabies testing in the US was < 90,000; this is thought to be due to factors related to the COVID-19 pandemic, as similar decreases in sample submission were also reported by Canada and Mexico.


Subject(s)
COVID-19 , Cat Diseases , Cattle Diseases , Chiroptera , Dog Diseases , Rabies , Cats , Dogs , Animals , United States , Cattle , Humans , Rabies/epidemiology , Rabies/veterinary , Animals, Domestic , Pandemics , Cat Diseases/epidemiology , Dog Diseases/epidemiology , Cattle Diseases/epidemiology , Equidae , Population Surveillance , COVID-19/veterinary , Raccoons , Mephitidae , Animals, Wild , Foxes , New York
5.
MMWR Morb Mortal Wkly Rep ; 71(3): 90-95, 2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1636128

ABSTRACT

On February 27, 2021, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the adenovirus-vectored COVID-19 vaccine (Janssen Biotech, Inc., a Janssen Pharmaceutical company, Johnson & Johnson), and on February 28, 2021, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation for its use as a single-dose primary vaccination in persons aged ≥18 years (1,2). On April 13, 2021, CDC and FDA recommended a pause in the use of Janssen COVID-19 vaccine after reports of thrombosis with thrombocytopenia syndrome (TTS), a rare condition characterized by low platelets and thrombosis, including at unusual sites such as the cerebral venous sinus (cerebral venous sinus thrombosis [CVST]), after receipt of the vaccine.* ACIP rapidly convened two emergency meetings to review reported cases of TTS, and 10 days after the pause commenced, ACIP reaffirmed its interim recommendation for use of the Janssen COVID-19 vaccine in persons aged ≥18 years, but included a warning regarding rare clotting events after vaccination, primarily among women aged 18-49 years (3). In July, after review of an updated benefit-risk assessment accounting for risks of Guillain-Barré syndrome (GBS) and TTS, ACIP concluded that benefits of vaccination with Janssen COVID-19 vaccine outweighed risks. Through ongoing safety surveillance and review of reports from the Vaccine Adverse Event Reporting System (VAERS), additional cases of TTS after receipt of Janssen COVID-19 vaccine, including deaths, were identified. On December 16, 2021, ACIP held an emergency meeting to review updated data on TTS and an updated benefit-risk assessment. At that meeting, ACIP made a recommendation for preferential use of mRNA COVID-19 vaccines over the Janssen COVID-19 vaccine, including both primary and booster doses administered to prevent COVID-19, for all persons aged ≥18 years. The Janssen COVID-19 vaccine may be considered in some situations, including for persons with a contraindication to receipt of mRNA COVID-19 vaccines.


Subject(s)
Ad26COVS1/adverse effects , Advisory Committees , COVID-19 Vaccines/therapeutic use , Thrombocytopenia/chemically induced , Vaccination/standards , Adult , Adverse Drug Reaction Reporting Systems , Aged , COVID-19/prevention & control , Centers for Disease Control and Prevention, U.S. , Drug-Related Side Effects and Adverse Reactions/epidemiology , Female , Humans , Male , Middle Aged , Risk Assessment , SARS-CoV-2/immunology , United States/epidemiology
7.
JAMA ; 325(24): 2448-2456, 2021 06 22.
Article in English | MEDLINE | ID: covidwho-1318650

ABSTRACT

Importance: Cerebral venous sinus thrombosis (CVST) with thrombocytopenia, a rare and serious condition, has been described in Europe following receipt of the ChAdOx1 nCoV-19 vaccine (Oxford/AstraZeneca), which uses a chimpanzee adenoviral vector. A mechanism similar to autoimmune heparin-induced thrombocytopenia (HIT) has been proposed. In the US, the Ad26.COV2.S COVID-19 vaccine (Janssen/Johnson & Johnson), which uses a human adenoviral vector, received Emergency Use Authorization (EUA) on February 27, 2021. By April 12, 2021, approximately 7 million Ad26.COV2.S vaccine doses had been given in the US, and 6 cases of CVST with thrombocytopenia had been identified among the recipients, resulting in a temporary national pause in vaccination with this product on April 13, 2021. Objective: To describe reports of CVST with thrombocytopenia following Ad26.COV2.S vaccine receipt. Design, Setting, and Participants: Case series of 12 US patients with CVST and thrombocytopenia following use of Ad26.COV2.S vaccine under EUA reported to the Vaccine Adverse Event Reporting System (VAERS) from March 2 to April 21, 2021 (with follow-up reported through April 21, 2021). Exposures: Receipt of Ad26.COV2.S vaccine. Main Outcomes and Measures: Clinical course, imaging, laboratory tests, and outcomes after CVST diagnosis obtained from VAERS reports, medical record review, and discussion with clinicians. Results: Patients' ages ranged from 18 to younger than 60 years; all were White women, reported from 11 states. Seven patients had at least 1 CVST risk factor, including obesity (n = 6), hypothyroidism (n = 1), and oral contraceptive use (n = 1); none had documented prior heparin exposure. Time from Ad26.COV2.S vaccination to symptom onset ranged from 6 to 15 days. Eleven patients initially presented with headache; 1 patient initially presented with back pain and later developed headache. Of the 12 patients with CVST, 7 also had intracerebral hemorrhage; 8 had non-CVST thromboses. After diagnosis of CVST, 6 patients initially received heparin treatment. Platelet nadir ranged from 9 ×103/µL to 127 ×103/µL. All 11 patients tested for the heparin-platelet factor 4 HIT antibody by enzyme-linked immunosorbent assay (ELISA) screening had positive results. All patients were hospitalized (10 in an intensive care unit [ICU]). As of April 21, 2021, outcomes were death (n = 3), continued ICU care (n = 3), continued non-ICU hospitalization (n = 2), and discharged home (n = 4). Conclusions and Relevance: The initial 12 US cases of CVST with thrombocytopenia after Ad26.COV2.S vaccination represent serious events. This case series may inform clinical guidance as Ad26.COV2.S vaccination resumes in the US as well as investigations into the potential relationship between Ad26.COV2.S vaccine and CVST with thrombocytopenia.


Subject(s)
COVID-19 Vaccines/adverse effects , Sinus Thrombosis, Intracranial/etiology , Thrombocytopenia/etiology , Adolescent , Adult , ChAdOx1 nCoV-19 , Critical Care , Fatal Outcome , Female , Headache/etiology , Humans , Middle Aged , Platelet Count , Sinus Thrombosis, Intracranial/therapy , Thrombocytopenia/therapy
8.
Clin Infect Dis ; 73(Suppl 1): S77-S80, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1315690

ABSTRACT

A suspected outbreak of influenza A and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at a long-term care facility in Los Angeles County was, months later, determined to not involve influenza. To prevent inadvertent transmission of infections, facilities should use highly specific influenza diagnostics and follow Centers for Disease Control and Prevention (CDC) guidelines that specifically address infection control challenges.


Subject(s)
COVID-19 , Influenza, Human , Disease Outbreaks , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Long-Term Care , SARS-CoV-2
9.
MMWR Morb Mortal Wkly Rep ; 70(25): 916-921, 2021 Jun 25.
Article in English | MEDLINE | ID: covidwho-1282750

ABSTRACT

Workplace activities involving close contact with coworkers and customers can lead to transmission of SARS-CoV-2, the virus that causes COVID-19 (1,2). Information on the approach to and effectiveness of COVID-19 workplace investigations is limited. In May 2020, Public Health - Seattle & King County (PHSKC), King County, Washington established a COVID-19 workplace surveillance and response system to enhance COVID-19 contact tracing and identify outbreaks in workplaces. During June 15-November 15, 2020, a total of 2,881 workplaces in King County reported at least one case of COVID-19. Among 1,305 (45.3%) investigated workplaces,* 524 (40.3%) met the definition of a workplace outbreak.† Among 306 (58.4%) workplaces with complete data,§ an average of 4.4 employee COVID-19 cases¶ (median = three; range = 1-65) were identified per outbreak, with an average attack rate among employees of 17.5%. PHSKC and the Washington State Department of Health optimized resources by establishing a classification scheme to prioritize workplace investigations as high, medium, or low priority based on workplace features observed to be associated with increased COVID-19 spread and workforce features associated with severe disease outcomes. High-priority investigations were significantly more likely than medium- and low-priority investigations to have two or more cases among employees (p<0.001), two or more cases not previously linked to the workplace (p<0.001), or two or more exposed workplace contacts not previously identified during case interviews (p = 0.002). Prioritization of workplace investigations allowed for the allocation of limited resources to effectively conduct workplace investigations to limit the potential workplace spread of COVID-19. Workplace investigations can also serve as an opportunity to provide guidance on preventing workplace exposures to SARS-CoV-2, facilitate access to vaccines, and strengthen collaborations between public health and businesses.


Subject(s)
COVID-19/epidemiology , Occupational Health , Public Health Surveillance , COVID-19/transmission , Contact Tracing , Humans , Interprofessional Relations , Washington/epidemiology , Workplace
10.
J Am Med Dir Assoc ; 22(3): 498-503, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1099168

ABSTRACT

BACKGROUND: Effective halting of outbreaks in skilled nursing facilities (SNFs) depends on the earliest recognition of cases. We assessed confirmed COVID-19 cases at an SNF impacted by COVID-19 in the United States to identify early indications of COVID-19 infection. METHODS: We performed retrospective reviews of electronic health records for residents with laboratory-confirmed SARS-CoV-2 during February 28-March 16, 2020. Records were abstracted for comorbidities, signs and symptoms, and illness outcomes during the 2 weeks before and after the date of positive specimen collection. Relative risks (RRs) of hospitalization and death were calculated. RESULTS: Of the 118 residents tested among approximately 130 residents from Facility A during February 28-March 16, 2020, 101 (86%) were found to test positive for SARS-CoV-2. At initial presentation, about two-thirds of SARS-CoV-2-positive residents had an abnormal vital sign or change in oxygen status. Most (90.2%) symptomatic residents had elevated temperature, change in mental status, lethargy, change in oxygen status, or cough; 9 (11.0%) did not have fever, cough, or shortness of breath during their clinical course. Those with change in oxygen status had an increased relative risk (RR) of 30-day mortality [51.1% vs 29.7%, RR 1.7, 95% confidence interval (CI) 1.0-3.0]. RR of hospitalization was higher for residents with underlying hepatic disease (1.6, 95% CI 1.1-2.2) or obesity (1.5, 95% CI 1.1-2.1); RR of death was not statistically significant. CONCLUSIONS AND IMPLICATIONS: Our findings reinforce the critical role that monitoring of signs and symptoms can have in identifying COVID-19 cases early. SNFs should ensure they have a systematic approach for responding to abnormal vital signs and oxygen saturation and consider ensuring common signs and symptoms identified in Facility A are among those they monitor.


Subject(s)
COVID-19/diagnosis , Skilled Nursing Facilities , Aged , Aged, 80 and over , COVID-19/physiopathology , COVID-19 Testing/methods , Comorbidity , Female , Humans , Male , Medical Records , Middle Aged , Prognosis , Retrospective Studies , SARS-CoV-2/isolation & purification , United States
11.
MMWR Morb Mortal Wkly Rep ; 69(12): 339-342, 2020 Mar 27.
Article in English | MEDLINE | ID: covidwho-18477

ABSTRACT

On February 28, 2020, a case of coronavirus disease (COVID-19) was identified in a woman resident of a long-term care skilled nursing facility (facility A) in King County, Washington.* Epidemiologic investigation of facility A identified 129 cases of COVID-19 associated with facility A, including 81 of the residents, 34 staff members, and 14 visitors; 23 persons died. Limitations in effective infection control and prevention and staff members working in multiple facilities contributed to intra- and interfacility spread. COVID-19 can spread rapidly in long-term residential care facilities, and persons with chronic underlying medical conditions are at greater risk for COVID-19-associated severe disease and death. Long-term care facilities should take proactive steps to protect the health of residents and preserve the health care workforce by identifying and excluding potentially infected staff members and visitors, ensuring early recognition of potentially infected patients, and implementing appropriate infection control measures.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Disease Outbreaks , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Residential Facilities , Skilled Nursing Facilities , Adult , Aged , Aged, 80 and over , COVID-19 , Chronic Disease , Coronavirus Infections/mortality , Coronavirus Infections/prevention & control , Disease Outbreaks/prevention & control , Fatal Outcome , Female , Humans , Infection Control/standards , Long-Term Care , Male , Middle Aged , Pneumonia, Viral/mortality , Pneumonia, Viral/prevention & control , Risk Factors , Washington/epidemiology , Young Adult
12.
N Engl J Med ; 382(21): 2005-2011, 2020 05 21.
Article in English | MEDLINE | ID: covidwho-17812

ABSTRACT

BACKGROUND: Long-term care facilities are high-risk settings for severe outcomes from outbreaks of Covid-19, owing to both the advanced age and frequent chronic underlying health conditions of the residents and the movement of health care personnel among facilities in a region. METHODS: After identification on February 28, 2020, of a confirmed case of Covid-19 in a skilled nursing facility in King County, Washington, Public Health-Seattle and King County, aided by the Centers for Disease Control and Prevention, launched a case investigation, contact tracing, quarantine of exposed persons, isolation of confirmed and suspected cases, and on-site enhancement of infection prevention and control. RESULTS: As of March 18, a total of 167 confirmed cases of Covid-19 affecting 101 residents, 50 health care personnel, and 16 visitors were found to be epidemiologically linked to the facility. Most cases among residents included respiratory illness consistent with Covid-19; however, in 7 residents no symptoms were documented. Hospitalization rates for facility residents, visitors, and staff were 54.5%, 50.0%, and 6.0%, respectively. The case fatality rate for residents was 33.7% (34 of 101). As of March 18, a total of 30 long-term care facilities with at least one confirmed case of Covid-19 had been identified in King County. CONCLUSIONS: In the context of rapidly escalating Covid-19 outbreaks, proactive steps by long-term care facilities to identify and exclude potentially infected staff and visitors, actively monitor for potentially infected patients, and implement appropriate infection prevention and control measures are needed to prevent the introduction of Covid-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Disease Transmission, Infectious , Infection Control/methods , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Skilled Nursing Facilities , Adult , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Contact Tracing , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Disease Outbreaks , Disease Transmission, Infectious/prevention & control , Female , Health Personnel , Humans , Long-Term Care , Male , Middle Aged , Pneumonia, Viral/mortality , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Washington/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL